Moment properties of multivariate infinitely divisible laws and criteria for self-decomposability
نویسندگان
چکیده
Ramachandran (1969, Theorem 8) has shown that for any univariate infinitely divisible distribution and any positive real number α, an absolute moment of order α relative to the distribution exists (as a finite number) if and only if this is so for a certain truncated version of the corresponding Lévy measure. A generalized version of this result in the case of multivariate infinitely divisible distributions, involving the concept of g-moments, is given by Sato (1999, Theorem 25.3). We extend Ramachandran’s theorem to the multivariate case, keeping in mind the immediate requirements under appropriate assumptions of cumulant studies of the distributions referred to; the format of Sato’s theorem just referred to obviously varies from ours and seems to be having a different agenda. Also, appealing to a further criterion based on the Lévy measure, we identify in a certain class of multivariate infinitely divisible distributions the distributions that are self-decomposable; this throws new light on structural aspects of certain multivariate distributions such as the multivariate generalized hyperbolic distributions studied by Barndorff-Nielsen (1977) and others. Various points of relevance to the study are also addressed through specific examples.
منابع مشابه
Moment properties of multivariate infinitely divisible laws and criteria for multivariate self-decomposability
Ramachandran (1969) [9, Theorem 8] has shown that for any univariate infinitely divisible distribution and any positive real number α, an absolute moment of order α relative to the distribution exists (as a finite number) if and only if this is so for a certain truncated version of the corresponding Lévy measure. A generalized version of this result in the case of multivariate infinitely divisi...
متن کاملOn the self-decomposability of the Fréchet distribution
Let {Γt, t ≥ 0} be the Gamma subordinator. Using a moment identification due to Bertoin-Yor (2002), we observe that for every t > 0 and α ∈ (0, 1) the random variable Γ t is distributed as the exponential functional of some spectrally negative Lévy process. This entails that all size-biased samplings of Fréchet distributions are self-decomposable and that the extreme value distribution Fξ is in...
متن کاملProperties of Stationary Distributions of a Sequence of Generalized Ornstein–uhlenbeck Processes
The infinite (in both directions) sequence of the distributions μ of the stochastic integrals ∫∞− 0 c−N (k) t− dL (k) t for integers k is investigated. Here c > 1 and (N (k) t , L (k) t ), t ≥ 0, is a bivariate compound Poisson process with Lévy measure concentrated on three points (1, 0), (0, 1), (1, c−k). The amounts of the normalized Lévy measure at these points are denoted by p, q, r. For k...
متن کاملErgodic Properties of Max–Infinitely Divisible Processes
We prove that a stationary max–infinitely divisible process is mixing (ergodic) iff its dependence function converges to 0 (is Cesaro summable to 0). These criteria are applied to some classes of max–infinitely divisible processes.
متن کاملInfinitely divisible multivariate and matrix Gamma distributions
Classes of multivariate and cone valued infinitely divisible Gamma distributions are introduced. Particular emphasis is put on the cone-valued case, due to the relevance of infinitely divisible distributions on the positive semi-definite matrices in applications. The cone-valued class of generalised Gamma convolutions is studied. In particular, a characterisation in terms of an Itô-Wiener integ...
متن کامل